İlk işlemciler valflar, ayrık transistörler ve çok kısıtlı bir şekilde entegre edilebilmiş devrelerden oluşuyordu fakat günümüz işlemcileri tek bir silikon yonga üzerine sığabiliyorlar. Çip üretiminde temel madde bir yarıiletken olan silikondur. Üretim sırasında çeşitli işlemler yapılır. Önce silicon ignot denen ilindirik bir yapı üretilir. Bunun hammaddesi saflaştırılmış silikondan elde edilen bir çeşit kristaldir. Daha sonra bu silindirik yapı ince ince dilimlenerek wafer denen dairesel tabakalar oluşturulur. Wafer tabakaları yüzeyleri ayna gibi olana kadar cilalanır. Çipler bu wafer tabakaları üzerinde oluşturulur. Aşağıdaki resimde bir wafer tabakasıyla üzerindeki çipleri görebilirsiniz.




Çipler üst üste katmanlardan oluşur ve bu katmanlar için değişik hammaddeler vardır. Örneğin yalıtkan yüzey olarak silikon dioksit kullanılırken iletken yollar ploisilikonla oluşturulabilir. Silikona iyon bombardımanı yapılarak silikondan transistörler üretilir ve bu işleme doping denir.

Bir katman photoresist (ışığa duyarlı) bir maddeyle kaplanır ve bu katmana istenen şeklin görüntüsü projeksiyonla yansıtılır. Bu işlemden sonra ışığa maruz kalan yüzey maskelenir ve kalan madde bir çözücü yardımıyla temizlenir. Maskelenen bölümde transistörler ve yollar oluşturulduktan sonra etching denen kimyasal bir işlemle istenmeyen maddeler katmandan uzaklaştırılarak katmana son şekli verilir. Bu işlem bütün çip hazır olana kadar her katman için ayrı ayrı yapılır. Katmanlardaki yapılar bir metrenin milyonda birinden daha küçük olduğu için bir toz tanesi bile (toz tanelerinin boyutları 100 mikronluk ölçülere kadar çıkabilir ki bu da işlemcideki yapıların 300 katından daha büyüktür) çok büyük problemler çıkarabilir. Bunun için koruyucu giysilerle girilebilen tozsuz odalarda üretim yapılır.

Başlarda yarı-iletken üretiminde hata payı %50 civarındaydı ve çoğu zaman üretilen çiplerin ancak yarıya yakını sağlam çıkıyordu. Bu oran %100 olamasa da geliştirilen üretim teknikleriyle günümüzde oldukça yükselmiştir. Wafera eklenen her katmandan sonra testler yapılır ve hatalar tesbit edilir. Die denen wafer üzerindeki �çıplak� çipler birbirinden ayrılır ve yapılan testlerden sonra sağlam olanlar kullanıma uygun şekilde paketlenir. Günümüzde işlemciler PGA(Pin Grid Arrays) formunda paketlenir. Bu paketlerde seramik bir dörtgenin altına dizilmiş pin denen bağlantı noktaları vardır. İşlemci çekirdekleri paketlendikten sonra aşağıdaki gibi görünür.




Intel'in entegre çip tasarımıyla üretilen ilk işlemcisi olan 4004 10 mikronluk bir üretim tekniğiyle üretiliyordu. İşlemci içindeki en küçük yapı bir metrenin on milyonda biri kadardı. Günümüzdeyse 0,13 mikronluk üretim teknikleri kullanılıyor ve çok yakında 0,1 mikronun da altına inilecek. Bu arada yukarıdaki fotoğraflar için haber editörümüz Ahmet'e teşekkür ediyorum, bazı fotoğrafları aradığım zaman bir türlü bulamamak gibi ilginç bir yeteneğe sahip olduğumdan bu bölüm az daha fotoğrafsız kalıyordu

Moore Yasası

1965 yılında Intel'in kurucularından Gordon Moore'un ortaya attığı Moore Yasası'na göre işlemcilerdeki transistör sayısı 18 ayda bir ikiye katlanır. Moore, bu yasanın sonraki on yıl boyunca geçerliliğini koruyacağını tahmin etmişti ama Intel bu yasayı günümüze kadar çiğnemeden devam ettirmeyi aşağıdaki grafikte de görebileceğiniz gibi başardı




Fizik yasaları, mühendislerin saat hızlarını sonsuza kadar arttırabilmelerini engeller. Silikonun sınırlarına neredeyse ulaşılmak üzereyken saat hızlarının hala arttığını görüyoruz. Saat hızı her zaman performans anlamına gelmiyor, bu yüzden mühendisler işlemcilerin her saat vuruşunda daha fazla komutu işleyebilmeleri için de uğraşıyorlar aynı zamanda. 4 bitlik bir işlemci bile iki tane 32 bitlik sayıyı toplayabilir ama bunun için pek çok komutu işlemesi gerekir. 32 bitlik bir işlemci bu toplamayı tek bir komutla yapabilir.

İşlemcilerin saat vuruşlarında işlem yaptıklarını söylemiştik. Normal yöntemlerle bir komutu yüklemek, çözmek, kullanacağı veriyi almak, çalıştırmak ve son olarak da sonucu yazmak için beş saat vuruşu gerekir. Bu sorunu çözmek için günümüz işlemcileri pipelining denen teknolojiyi kullanılır. Bu teknolojide bir işlemi yapmak için değişik aşamalar ard arda dizilir ve bir işlemin bir aşaması yapılırken boştaki kaynaklarla da başka bir işlemin herhangi bir aşaması yapılabilir. Bu teknolojiyle bir komutu tek bir saat vuruşunda bitirebilmek mümkün olur. Superscalar denen bir mamariyle paralel pipellinelar kullanılarak performans daha da arttırılabilir. Bu konudaki son gelişme Intel'in Hyperthreading teknolojisidir. Komutları paralel olarak çalıştırmak için çift işlemciye ihtiyaç duyulur. Bu teknolojideyse olaya şu şeklide yaklaşılır: Komutlar thread denen parçalardan oluşur ve çift işlemciyle komut seviyesinde paralellik yerine tek işlemciyle thread seviyeinde paralellik sağlanır. Komutlar threadlere ayrılır ve bu threadler paralel olarak işlenip çıkışta tekrar birleştirirler. Tek bir işlemci tam anlamıyla olmasa da belirli bir seviyede çift işlemci gibi çalışır. Bu yöntem sadece tek bir işlemcinin kaynakları kullanıldığı için çift işlemcinin yerini tutamasa da bazı uygulumalarda belirli bir performans artışı sağlar. En büyük dezavantajı komutların parçalanıp tekrar birleştirilmesi sırasında kaybedilen zaman yüzünden aynı anda birden çok komutun işlenmesine ihtiyaç duymayan programlarda az da olsa performans düşüşü yaşanmasıdır.