Tekrar su benzetmesinden elektronların dünyasına dönecek olursak, bazı kavramları anlamızın kolaylaştığını göreceğiz.

PRECHARGE: Bu kelimeyi çoğumuz duymuşuzdur. Özellikle BIOS'ta RAM'lerle ilgili parametrelerle oynayıp bellek modüllerinden son performans damlasını sıkarak çıkartmaya çalışanlarımız RAS-to-Precharge Delay gibi terimlerle karşılaşmıştır. PRECHARGE'ın karşılığı, sütunlara ait ana boruların okuma ve yazma öncesinde doldurulmasıdır. Gerçekte benzetmemizdeki borular yerine metal hatları su yerine elektronlarla yani elektriksel yükle doldurduğumuz için 'PRE-CHARGE' yani 'ÖN YÜKLEME' terimi kullanılmıştır.

CAS: Diğer bir parametre olan ve CAS diye tabir edilen Column Access Strobe yani Sütun Erişim Darbesi de aynı mekanizmayla kolayca açıklanabilir. Okuma sırasında hücremiz sütuna ait borudan su emerek borudaki su seviyesini azaltmaya çalışırken, seviyedeki bu azalma, hücremizin boyutları önceden belirttiğimiz az yer kaplaması amacıyla küçük tasarlanması sonucu hücremizi ana boruya bağlayan vananın bulunduğu hat dar olduğu ve hücremizin emiş gücü de boyutlarıyla orantılı olarak düşük olduğundan, yavaş gerçekleşmektedir. Dolayısıyla ana borudaki su seviyesi algılayıcının bu azalmayı alglılayabileceği seviyeye ulaşması ve algılma işleminin başlatılabilmesi için belli bir süre beklenilmesi gerekiyor. Aynı zamanda adreste belirtilen sütun numarasının da çözümlenmesi bankadaki sütun sayısına bağlı olarak zaman alıyor. İşte bu süreye CAS gecikmesi (CAS Latency - kısaca CL) deniyor. Bu gecikme genellikle belleği kontrol eden ana saat sinyalinin periyodu cinsinden verilir. Örneğin, CL=2 demek okuma başladıktan yani haznenin vanası açıldıktan itibaren algılama komutu verilinceye kadar 2 saat periyodu süresince beklemek gerekiyor. Dolayısıyla CL değeri büyük olan bellekler, daha uzun beklemeleri gerektiğinden daha yavaş çalışırlar.

RAS: Adreste belirtilen satır numarasının çözümlenmesi ve belleğimizde o satırda yer alan bütün hücrelere ait vanaların açılabilmesi için beklenmesi gereken süreye RAS (Row Access Strobe) yani Satır Erişim Darbesi deniyor. RAS da CAS gibi saat periyodu cinsinden belirtiliyor. Dolayısıyla RAS'ı küçük lan bellekler daha hızlı oluyorlar.

RAS-TO-CAS DELAY: Erişim sırasında, bildiğimiz gibi, önce bankadaki ilgili satır okunmaya başlıyor, bit hattını temsil eden borudaki su yani yük seviyesi ilgili hazneler tarafından algılanabilir seviyeye çekilene kadar bekleniyor, ardından ilgili sütun belirleniyor ve o sütuna ait algılayıcılara ‘algıla' komutu veriliyor. İşte satırdaki haznelerin açılmasından bit hatlarındaki yük miktarının (gerilim olarak ta düşünebiliriz) algılanabilir seviyeye ulaşmasına kadar beklenilmesi gereken süreye RAS-TO-CAS DELAY (Satır Erişim Darbesi-Sütun Erişim Darbesine Arası Gecikme) deniyor. Anlaşılacağı üzere bu parametre ne kadar düşük olursa bellek o kadar hızlı demektir. Diğer parametreler gibi bu da saat işaretinin periyodu cinsinden ifade edilir.

RAS-TO-PRECHARGE DELAY: Bildiğimiz gibi her okuma ve yazma işlemi 'öncesinde', diğer bir bakışla, (her yazma ve okuma öncesi başka okuma ve yazma işlemleri gerçekleştiği düşünüldüğünde) 'sonrasında' sütunlara ait ana hatlar suyla dolduruyor yani PRECHARGE ediliyor. Eğer bu işlem, herhangi bir okuma ve yazma işlemi sırasında açılan ve hazneleri sütuna ait boruya bağlayan vanalar kapanmadan yapılırsa aynen 1 yazma işleminde olduğu gibi yüksek basınçla boş olan hazneyi boşaltabilir ve verinin bozulmasına neden olabilir. Bunu engellemek ve vanalar açıkken PRECHARGE işlemine başlamayı engellemek için belli bir süre beklenmesi gerekiyor. Bu da elbette takip eden okuma ve yazma işlemlerine başlamayı geciktirerek (unutmayalım ki boruların erişim öncesi tamamen dolu olması gerekiyor) performansı azaltıyor. Bu gecikme de saat periyodu cinsinden ifade ediliyor ve küçük bir sayı olması hızlı bellek olduğuna işaret ediyor.

SAAT FREKANSI: Önceden tanımladığımız CAS, RAS gibi gecikme süreleri işte bu ana saat sinyalinin periyodu cinsinden belirtiliyor.

PERİYOD=1/FREKANS

eşitliğine göre, saatin frekansı ne kadar yüksekse periyodu o kadar kısa oluyor, dolayısıyla CAS gibi saat periyodu cinsinden ifade edilen bekleme süreleri kısaltılmış oluyor. Bu süre belleğin kaldırabileceğinden fazla kısaltılırsa, önceden belirtildiği gibi, veri kayıpları oluyor, bellek hatalı çalışıyor ve sonuçta PC'ler ya boot etmiyor ya da etse dahi çalışma sırasında beklenmedik kilitlenmelere yol açıyor. Kısaca, RAS ve CAS gibi, birimi zaman olan parametreler saat frekansıyla doğrudan etkileniyor. Mesela, 133 MHz saat frekansında CAS=2'de çalışabilen bir bellek 166 MHZ'de ancak CAS=2.5 ya da 3'te çalışabiliyor. İdeal olanı, belleğin yüksek saat frekanslarında ve düşük CAS, RAS gibi parametrelerle çalışabiliyor olması.

Saat işareti basitçe bir kare dalga biçiminde; periyodun yarı süresi aralıklarla periyodik olarak bir yükseliyor, bir düşüyor. Saat işaretinin değiştiği bu bölgelere düşen ve yükselen kenarlar deniyor. Saat frekansının belirlediği aralıklarla gelen bu kenarlar, yonga üzerindeki bellek bankalarının ve diğer devrelerin eş zamanlı olarak (senkronize bir şekilde) çalışmasını sağlar. Örneğin sütunlarda yer alan algı yükselticilerine 'algıla' komutu ya da okunmak istenen veriyi bankalardan alarak yonganın dışına süren sürücülere 'sür' komutu bu kenarlar aracılığıyla verilir. SDR belleklerde komutlar yükselen kenarlarda verilirken DDR belleklerde bu hem yükselen hem de düşen kenarlarda gerçekleşir. Bu sayede, DDR belleklerdeki veri çıkışı SDR'ların teorik olarak iki katıdır çünkü bir saat periyodu içinde iki kere (hem yükselen hem düşen kenarda) veri çıkışı olur.

ADDITIVE LATENCY: 'Ekli Gecikme' denilen ve sadece DDR-II tipi bellekler için geçerli olan bu gecikme süresi CAS'in üzerine ekleniyor ve CAS'i arttırma yani belleği yavaşlatma etkisi yapıyor. Elbette ki istenilen bu değerin düşük olması. DDR-II bellekleri henüz PC'lerde sistem RAM'i olarak görmeye başlamadıysak ta bir süredir ekran kartlarında kullanılmaktalar. Ama sizleri şimdiden bu tip parametreleri BIOS'larda görmeye hazırlayalım diye düşündük.

BURST ve BURST LENGTH: Burst kelimesinim tam Türkçe karşılığını bulmak zor ancak illa da yakın sayılabilecek bir terim bulalım dersek sanıyorum Ardışıl Veri Aktarımı diye nitelendirmek yerinde olur. Erişim sırasında biliyoruz ki bankadaki bütün satır aynı anda okunuyor ya da yazılıyor. İşte bu noktada BURST kavramı devreye giriyor: Aynı satırdaki komşu byte'lar, veri yolunun elverdiği ölçüde, saat işaretinin birbirini takip eden ilgili kenarlarında ardı sıra dışarıya sürülüyor ya da içeri alınıyor. Okunmak ya da yazılmak istenilen veri bellekte aynı satırda yer alıyorsa, bu şekilde CAS ve RAS gecikmelerini beklemeksizin ardışıl konumdaki veri grubu, bellek yongası ve anakart arasında hızlıca taşınabiliyor. Burst olayının ardışıl olarak kaç saat periyodu süreceği ya da diğer bir deyişle ne kadar verinin burst yoluyla taşınacağını belirten parametre ise BURST LENGTH (Burst Uzunluğu). Verinin ardışıl konumda olduğu durumlarda burst uzunluğunun büyük tutulması performansı arttırır ancak tersine bir durumda yani verini bellek tablosu içinde farklı satırlara dağıldığı (bir bakıma sabit sürücülerdeki fragmente olma durumu gibi) burst az da olsa performansı olumsuz etkileyen bir etken olarak karşımıza çıkabilir. Sanıyoruz ki en akıllıcası, BURST uzunluğunu orta bir seviyede tutmak olacaktır.

BESLEME GERİLİMİ: İşlemci ve bellek, daha genel haliyle her yonga, çalışabilmesi için bir besleme gerilimine ihtiyaç duyar. Besleme gerilimi, suyu, vanaları ve boruları kullandığımız benzetmemizde suyun kaynaklarındaki (emme ya da basma) akış hızına ya da bir bakıma basıncına denk gelir. Su ne kadar basınçlıysa bit hatlarında gerçekleşen precharge ve hazneye olan su akışı o derece hızlı gerçekleşir dolayısıyla bellek belli bir görevi daha hızlı yerine getirir, beklemesi gereken süreler kısalır ve böylece ya aynı saat frekansında daha küçük RAS,CAS v.s. değerleriyle ya da aynı RAS, CAS değerleriyle daha yüksek saat frekanslarında çalışmaya devam edebilir. Overclock'la uğraşanlarımız bilir ki işlemcileri yüksek frekanslarda çalıştırmanın en etkili yolu besleme gerilimini arttırmaktır. Bu konuya overclocking hakkında bilinmeyenleri açıklamaya çalıştığımız makalemizde detaylı olarak deyinmiştik. Bellek yongaları da işlemciler gibi birer tümdevre olduklarından aynı prensiplere tabidirler ve dolayısıyla besleme geriliminin arttırılması bellek yongalarının aynı işi daha kısa sürede tamamlamalarına yardımcı olacağından daha yüksek saat frekanslarında çalışmalarına imkan tanıyacaktır.

Çeşitli bellek türleri için normalde gereken besleme gerilimi şu degerleri almaktadır:


____________________________

RAM Türü --- Besleme Gerilimi

SDRAM = 3.3 Volt

DDR-IRAM = 2.5 Volt

RD-RAM = 2.5 veya 1.8 Volt

DDR-II RAM = 1.8 Volt
____________________________


Voltaj seviyelerinin yeni nesillerde giderek düşmesine rağmen performansın artması çelişkisinin yanıtı, üretim teknolojileri geliştikçe küçülen transistörlerin aynı hızda çalışabilmeleri için daha az gerilimle beslenmeye ihtiyaç duymalarında ve bellek mimarilerindeki ilerlemelerde yatmaktadır.

Voltaj seviyelerinin yeni nesillerde giderek düşmesine rağmen performansın artması çelişkisinin yanıtı, üretim teknolojileri geliştikçe küçülen transistörlerin aynı hızda çalışabilmeleri için daha az gerilimle beslenmeye ihtiyaç duymalarında ve bellek mimarilerindeki ilerlemelerde yatmaktadır.